Library Initiative

We're embarking on a project to compile a comprehensive collection of resources where direct flux measurements, specifically those using eddy covariance approaches, have been applied for immediate and tangible societal benefits.

If you've come across any publications, conference presentations, white papers, or websites that fit this description, we'd be thrilled if you could share them with us at founders@carbondew.org

Here's what we're looking for:

  • Any type of publication, presentation, or web resource that utilize eddy covariance, eddy accumulation, relaxed eddy accumulation, or disjunct eddy covariance.

  • Measurements that have been used for practical non-academic applications such as farm applications, forestry, gas leak detection, landfill modification, etc., as well as resources that have contributed to the development of regulatory policies, standards, protocols, and more.

  • Ideas and concepts for the measurements to be used for any type of practical non-academic applications.

Whenever possible, please send us links to full texts and open-access websites. If that's not possible, regular references are perfectly fine too.

We kindly ask you to focus on resources that are directly related to our cause. While we appreciate the broader context, for this project, we're specifically interested in concrete examples rather than hypothetical or philosophical insights.

While we may expand our focus to include other methods such as soil chambers and gradients in the future, our current focus is on the eddy methods.

Thank you so much for your time and contribution to this initiative. Your support is invaluable to us and the broader community we serve!

CarbonDew Library

  • Al-Qasim, A.S., Alzayani, A., Almuaibid, A., Yousef, A., Burba, G., Fratini, G., Griessbaum, F. and Facius, D., 2023. The intelligent Carbon Leakage Surveillance (iCLS) System. Abu Dhabi International Petroleum Exhibition and Conference, Paper Number: SPE-216502-MS, 18 pp., DOI: 10.2118/216502-MS

  • Anić, M., Ostrogović Sever, M.Z., Alberti, G., Balenović, I., Paladinić, E., Peressotti, A., Tijan, G., Večenaj, Ž., Vuletić, D. and Marjanović, H., 2018. Eddy covariance vs. biometric based estimates of net primary productivity of pedunculate oak (Quercus robur L.) forest in Croatia during ten years. Forests, 9(12), p.764. See at MDPI.

  • Ashburn, L. “Flux Stations Are a Critical Measurement Tool in the Agrifood Industry’s Quest to Reach Climate Goals.” CarbonSpace. Accessed July 31, 2024. https://carbonspace.tech/blog/fluxstations.

  • Ashburn, L. “Net Ecosystem Exchange: A Paradigm Shift for Tracking the Carbon Footprint of Land Use.” CarbonSpace. Accessed July 31, 2024. https://carbonspace.tech/blog/nee.

  • Bautista, N., Marino, B.D. and Munger, J.W., 2021. Science to commerce: a commercial-scale protocol for carbon trading applied to a 28-year record of forest carbon monitoring at the Harvard Forest. Land, 10(2), p.163. See at MDPI.

  • Burba, G., 2022. Eddy Covariance Method for Scientific, Regulatory, and Commercial Applications. LI-COR Biosciences, Lincoln, USA, Hard- and Softbound, 702 pp. ISBN: 978-0-578-97714-0. See at LI-COR, Google Books.

  • Burba G., 2022. 2100+ CO2 and H2O Flux Measurements Across the Globe: Sitting on a Golden Egg? The 5th ICOS Science Conference on Greenhouse Gases and Biogeochemical Cycles, Utrecht, The Netherlands, September 13-15.

  • Burba, G., Madsen, R. and Feese, K., 2013. Eddy Covariance Method for CO2 Emission Measurements in CCUS Applications: Principles, Instrumentation, and Software. Energy Procedia, 40, pp.329-336. See at ScienceDirect.

  • Burba, G., McDermitt, D., Xu, L., Li, J., Green, R., Chanton, J. and Welding, K., 2016. Using Automated Eddy-covariance Stations for Studying Landfill Methane Emissions. In Air Waste Manage. Assoc.-Air Qual. Measur. Methods Technol. Conference (Vol. 2016, pp. 159-170). See at RG.

  • Burba G., S. Metzger, T. Awada, O. Demidov, A. Desai, R. Desjardins, D. Durden, J. Elston, R. Granat, K. Hemes, S. Kannenberg, J.S. Kayode, A. Koeppel, G. Koren, S.C. Lee, L. Mutambala, A. Mwape, V. Pashkin, B. Runkle, S. Schodel, P. Senthilvalavan, J. Shanahan, U.P. Surendran, 2023. Carbon Dew Coordinated Response to The Draft Federal Strategy to Advance Greenhouse Gas Emissions Measurement and Monitoring for the Agriculture and Forest Sectors, ESS Open Archive, 8 pp., DOI: 10.22541/essoar.169418018.80680586/v2. See at ESSOA.

  • Campioli, M., Malhi, Y., Vicca, S., Luyssaert, S., Papale, D., Peñuelas, J., Reichstein, M., Migliavacca, M., Arain, M.A. and Janssens, I.A., 2016. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature communications, 7(1), p.13717. See at Nature.

  • Demuzere, M., Harshan, S., Järvi, L., Roth, M., Grimmond, C.S.B., Masson, V., Oleson, K.W., Velasco, E. and Wouters, H., 2017. Impact of urban canopy models and external parameters on the modelled urban energy balance in a tropical city. Quarterly Journal of the Royal Meteorological Society, 143, pp. 1581-1596.

  • Desai, A., 2024. The Invisible Hand of Carbon Dioxide on Forest Productivity. EOS Editor Highlights. See at EOS.

  • Diaz, M.B., Roberti, D.R., Carneiro, J.V., de Arruda Souza, V. and de Moraes, O.L.L., 2019. Dynamics of the superficial fluxes over a flooded rice paddy in southern Brazil. Agricultural and Forest Meteorology, 276, p.107650. See at AFM.

  • Dilley, M., and D. Grimes, 2024. Policy Brief: Promoting Mitigation and Biodiversity by Increasing the Value of Natural Carbon Sequestration. See at Hyphen.

  • Goettemoeller J., and Gas Analysers Team, 2016. Tools for Mapping Greenhouse Gas Emissions in Urban Environments. International Environmental Technology (9/10): 2 pp.

  • Gurney, K. and Shepson, P., 2021. The power and promise of improved climate data infrastructure. Proceedings of the National Academy of Sciences, 118(35), p.e2114115118.

  • Haniff, M.H., Ibrahim, A., Jantan, N.M., Shahabudin, N., Mos, H., Yusup, Y. (2016). Carbon dioxide and energy fluxes above an oil palm canopy in peninsular Malaysia. International Journal of Agronomy and Agricultural Research, 9(2), 137-146. https://www.researchgate.net/publication/307008512_Carbon_dioxide_and_energy_fluxes_above_an_oil_palm_canopy_in_peninsular_Malaysia

  • Haniff, M.H., Anis Ibrahim, Nur Maisarah, J., Nuramanina, S., Hasimah, M., Afifah, A.R., Yusup, Y. (2018). Influence of eddy covariance sensor height above the oil palm canopy on CO2 and energy fluxes. Journal of Oil Palm Research, 30(March 2018), 94-100. https://doi.org/10.21894/jopr.2018.0005

  • Hemes, K.S., Runkle, B.R., Novick, K.A., Baldocchi, D.D. and Field, C.B., 2021. An ecosystem-scale flux measurement strategy to assess natural climate solutions. Environmental science & technology, 55(6), pp.3494-3504.

  • Hutley, L.B., Leuning, R., Beringer, J. and Cleugh, H.A., 2005. The utility of the eddy covariance techniques as a tool in carbon accounting: tropical savanna as a case study. Australian Journal of Botany, 53(7), pp.663-675. See at Academia.

  • Hyphen Global, 2024. Building Trust in Carbon Markets through Atmospheric-Based Greenhouse Gas Monitoring and Verification. See at Hyphen.

  • ICOS, 2024. Monitor, Report, and Verify Emissions to Accelerate Climate Action. See at ICOS.

  • Lipson, M., Grimmond, S., Best, M., Chow, W., Christen, A., Chrysoulakis, N., Coutts, A., Crawford, B., Earl, S., Evans, J., Fortuniak, K., Heusinkveld, B.G., Hong, J.-W., Hong, J., Järvi, L., Jo, S., Kim, Y.-H., Kotthaus, S., Lee, K., Masson, V., McFadden, J.P., Michels, O., Pawlak, W., Roth, M., Sugawara, H., Tapper, N., Velasco, E. and Ward, H.C., 2022. Harmonized gap-filled datasets from 20 urban flux tower sites. Earth System Science Data, 14, pp. 5157-5178.

  • Maboni, C., Bremm, T., Aguiar, L.J.G., Scivittaro, W.B., de Arruda Souza, V., Zimermann, H.R., Teichrieb, C.A., de Oliveira, P.E.S., Herdies, D.L., Degrazia, G.A. and Roberti, D.R., 2021. The fallow period plays an important role in annual CH4 emission in a rice paddy in Southern Brazil. Sustainability, 13(20), p.11336. See at MDPI.

  • Marras, S., Masia, S., Duce, P., Spano, D. and Sirca, C., 2015. Carbon footprint assessment on a mature vineyard. Agricultural and Forest Meteorology, 214, pp.350-356. See at UNISS.

  • Meier, F., Pawlak, W., Roth, M., Theeuwes, N.E., Velasco, E., Vogt, R. and Teuling, A.J., 2022. Urban water storage capacity inferred from observed evapotranspiration recession. Geophysical Research Letters, 49(3., p. e2021GL096069.

  • Meili, N., Manoli, G., Burlando, P., Carmeliet, J., Chow, W., Coutts, A., Roth, M., Velasco, E., Vivoni, E. and Fatichi, S., 2021. Tree effects on urban microclimate: diurnal, seasonal and climatic temperature differences explained by separating radiation, evapotranspiration, and roughness effects. Urban Forestry & Urban Greening, 58, p. 126970.

  • Metzger, S., Burba, G., Aguilos, M., Bernier, T., Curtis, B., Demidov, O., Durden, D., Elston, J., Hamann, H., Hawkins, J., Kayode, J. S., Kisekka, I., Klein, L., Knox, S., Koren, G., Malone, S., Pierrat, Z., Runkle, B., Schodel, S., Shanahan, J., Shrestha, G., Udayar Pillai, S., Vargas, R., Velasco, E., and Yi, K., 2023. Carbon Dew coordinated response to: The federal strategy to advance an integrated US greenhouse gas monitoring and information system, ESS Open Archive, 6 pp., doi:10.22541/essoar.168500353.39806527/v1. See at ESSOA.

  • Metzger, S., N. Romano, S. Weintraub-Leff, G. Burba, P. Oikawa et al, 2023. Carbon Dew: Direct Greenhouse Gas Exchange Measurements for Equitable Worldwide Emissions Trading. Battelle 2023 Conference "Innovations in Climate Resilience", Columbus Ohio, March 28-30

  • Mills, M.B., Malhi, Y., Ewers, R.M., Kho, L.K., Teh, Y.A., Both, S., Burslem, D.F., Majalap, N., Nilus, R., Huaraca Huasco, W. and Cruz, R., 2023. Tropical forests post-logging are a persistent net carbon source to the atmosphere. Proceedings of the National Academy of Sciences, 120(3), p.e2214462120. See at PNAS.

  • Mos, H., Harun, M.H.H., Jantan, N.M.M., Hashim, Z., Ibrahim, A.S.S., Yusup, Y. (2023). Differences in CO2 emissions on a bare-drained peat area in Sarawak, Malaysia, based on different measurement techniques. Agriculture. 13, 622. https://doi.org/10.3390/agriculture13030622

  • Nicolini, G., Antoniella, G., Carotenuto, F., Christen, A., Ciais, P., Feigenwinter, C., Gioli, B., Stagakis, S., Velasco, E., Vogt, R., Ward, H.C., Barlow, J., Chrysoulakis, N., Karl, T., Graus, M., Helfter, C., Heusinkveld, B., Järvi, L., Marras, S., Masson, V., Matthews, B., Meier, F., Nemitz, E., Sabbatini, S., Scherer, D., Schume, H., Sirca, C., Spano, D., Steeneveld, G.J., Vagnoli, C., Wang, Y., Zaldei, A., Zheng, B. and Papale, D., 2022. Direct observations of CO2 emission reductions due to COVID-19 lockdown across European urban districts. Science of the Total Environment, 830, p. 154662.

  • Novick, K. A., Metzger, S., Anderegg, W. R. L., Barnes, M., Cala, D. S., Guan, K., Hemes, K. S., Hollinger, D. Y., Kumar, J., Litvak, M., Lombardozzi, D., Normile, C. P., Oikawa, P., Runkle, B. R. K., Torn, M., and Wiesner, S.: Informing nature-based climate solutions for the U.S. with the best-available science, Global Change Biol., 1-17, doi:10.1111/gcb.16156, 2022.

  • Novick, K., Williams, C., Runkle, B., Anderegg, W. R. L., Hollinger, D., Litvak, M., Normile, C., Shrestha, G., Almaraz, M., Anderson, C., Barnes, M., Baldocchi, D., Colburn, L., Cullenward, D., Evans, M., Guan, K., Keenan, T., Lamb, R., Larson, L., Oldfield, E., Poulter, B., Reyes, J., Sanderman, J., Selmants, P., Sepulveda Carlo, E., Torn, M. S., Trugman, A., and Woodall, C.: White Paper: The science needed for robust, scalable, and credible nature-based climate solutions in the United States: Summary Report., Indiana University, Bloomington, IN, U.S.A., 16 pp., doi:10.5967/5968rgp-tc5911, 2022.

  • Papale, D., Christen, A., Davis, K., Feigenwinter, C., Gioli, B., Järvi, L., Matthews, B., Velasco, E. and Vogt, R., 2022. Eddy covariance flux observations. Chapter B.i.: IG3IS Urban Greenhouse Gas Emission Observation and Monitoring Good Research Practice Guidelines. Gaw Report No. 275, pp. 114-123, Global Atmospheric Watch, World Meteorological Organization, Geneva, Switzerland.

  • Peddinti, S.R. and Kambhammettu, B.P., 2019. Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques. Agricultural Water Management, 212, pp.68-77. See at AWM.

  • Roberti, D.R., Mergen, A., Gotuzzo, R.A., Veeck, G.P., Bremm, T., Marin, L., de Quadros, F.L.F. and Jacques, R.J.S., 2024. Sustainability in Natural Grassland in the Brazilian Pampa Biome: Livestock Production with CO2 Absorption. Sustainability, 16(9), p.3672. See at MDPI.

  • Roth, M., Jansson, C. and Velasco, E., 2017. . Multi-year energy balance and carbon dioxide fluxes over a residential neighborhood in a tropical city. International Journal of Climatology, 37, pp. 2679-2698.

  • Runkle, B.R., Suvočarev, K., Reba, M.L., Reavis, C.W., Smith, S.F., Chiu, Y.L. and Fong, B., 2018. Methane emission reductions from the alternate wetting and drying of rice fields detected using the eddy covariance method. Environmental science & technology, 53(2), pp.671-681. See at NSF.

  • Quinn, T., C. Boettiger, C. Carey, M. Dietze, L. Johnson, M. Kenney, J. McLachlan, J. Peters, E. Sokol, J. Weltzin, A. Willson, W. Woelmer, C. Barbosa, N. Bartolucci, M. Benson, U. Bhat, M. Bitters, G. Burba, S. Burnet, P. Ceja, et al, 2023. The NEON Ecological Forecasting Challenge. Frontiers in Ecology and the Environment, 21(3): 112-113, doi:10.1002/fee.2616

  • Shrestha, O., Khan, A., Torrion, J.A., McVay, K., Powell, S.P., Sigler, A. and Stoy, P., Crop Coefficients for Cereal Crops in Montana USA from Eddy Covariance Observations. Preprint.

  • So, K., Rogers, C.A., Li, Y., Arain, M.A. and Gonsamo, A., 2024. Retention forestry as a climate solution: Assessing biomass, soil carbon and albedo impacts in a northern temperate coniferous forest. Science of The Total Environment, p.174680. See at ScienceDirect.

  • Talib, A., Desai, A.R., Huang, J., Thom, J., Panuska, J.C. and Stoy, P.C., 2024. Improving parameterization of an evapotranspiration estimation model with eddy covariance measurements for a regional irrigation scheduling program. Agricultural and Forest Meteorology, 350, p.109967. See at AFM.

  • Teets, A., Fraver, S., Hollinger, D.Y., Weiskittel, A.R., Seymour, R.S. and Richardson, A.D., 2018. Linking annual tree growth with eddy-flux measures of net ecosystem productivity across twenty years of observation in a mixed conifer forest. Agricultural and Forest Meteorology, 249, pp.479-487. See at AFM.

  • Vargas, R., Loescher, H.W., Arredondo, T., Huber-Sannwald, E., Lara-Lara, R. and Yépez, E.A., 2012. Opportunities for advancing carbon cycle science in Mexico: Toward a continental scale understanding. Environmental science & policy, 21, pp.84-93. See at Academia.

  • Vargas R., Yépez EA, Andrade JL, Ángeles G, Arredondo T, Castellanos AE, Delgado J, Garatuza-Payan J, González-Castillo E, Oechel W, Sánchez-Azofeifa A, Velasco E, Vivoni ER, Watts C., 2013. Progress and opportunities for water and greenhouse gases flux measurements in Mexican ecosystems: the MexFlux network. Atmósfera, 26(3), 325-336.

  • Veeck, G.P., Dalmago, G.A., Bremm, T., Buligon, L., Jacques, R.J.S., Fernandes, J.M., Santi, A., Vargas, P.R. and Roberti, D.R., 2022. CO2 flux in a wheat‐soybean succession in subtropical Brazil: A carbon sink (Vol. 51, No. 5, pp. 899-915).

  • Velasco, E., 2021. Impact of Singapore’s COVID-19 confinement on atmospheric CO2 fluxes at neighborhood scale. Urban Climate, 37, p. 100822.

  • Velasco, E., 2022. Services and limits of urban vegetation to mitigate climate change. Dept. of Architecture, National University of Singapore, Singapore, 14 Jan.

  • Velasco, E., 2023. Urban flux towers: applications and challenges. AmeriFlux Annual Meeting 2023, Harvard Forest, Petersham, Massachusetts, USA, 4-6 Oct.

  • Velasco, E., 2023. Urban warming, climate change and atmospheric pollution. First colloquium on urban climates, Institute of Geography, National Autonomous University of Mexico, Mexico City, Mexico, 25 Aug.

  • Velasco, E., Lamb, B., Pressley, S., Allwine, E., Westberg, H., Jobson, B.T., Alexander, M., Prazeller, P., Molina, L. and Molina, M., 2005. Flux measurements of volatile organic compounds from an urban landscape. Geophysical Research Letters, 32(20., p. L20802.

  • Velasco, E., Perrusquia, R., Jiménez, E., Hernández, F., Camacho, P., Rodríguez, S., Retama, A. and Molina, L.T., 2014. Sources and sinks of carbon dioxide in a neighborhood of Mexico City. Atmospheric Environment, 97, pp. 226-238.

  • Velasco, E., Pressley, S., Allwine, E., Grivicke, R., Molina, L.T. and Lamb, B., 2011. Energy balance in urban Mexico City: observation and parameterization during the MILAGRO/MCMA-2006 field campaign. Theoretical and Applied Climatology, 103, pp. 501-517.

  • Velasco, E., Pressley, S., Allwine, E., Westberg, H. and Lamb, B., 2005. Measurements of CO2 fluxes from the Mexico City urban landscape. Atmospheric Environment, 39(38., pp. 7433-7446.

  • Velasco, E., Pressley, S., Grivicke, R., Allwine, E., Coons, T., Foster, W., Jobson, T., Westberg, H., Ramos, R., Hernández, F., Molina, L.T. and Lamb, B., 2009. Eddy covariance flux measurements of pollutant gases in urban Mexico City. Atmospheric Chemistry and Physics, 9, pp. 7325-7342.

  • Velasco, E. and Roth, M., 2010. Cities as net sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geography Compass, 4(9., pp. 1238-1259.

  • Velasco, E., Roth, M., Norford, L. and Molina, L.T., 2016. Does urban vegetation enhance carbon sequestration? Landscape and Urban Planning, 148, pp. 99-107.

  • Velasco, E., Roth, M., Tan, S.H., Quak, M., Nabarro, S. and Norford, L., 2013. The role of vegetation in the CO2 flux from a tropical urban neighborhood. Atmospheric Chemistry and Physics, 13, pp. 10185-10202.

  • Velasco, E., Segovia, E. and Roth, M., 2023. High-resolution maps of carbon dioxide and moisture fluxes over an urban neighborhood. Environmental Science: Atmospheres, 3, pp. 1110-1123.

  • Wall, A.M., Campbell, D.I., Mudge, P.L. and Schipper, L.A., 2020. Temperate grazed grassland carbon balances for two adjacent paddocks determined separately from one eddy covariance system. Agricultural and Forest Meteorology, 287, p.107942.

  • Ward, P.R., Micin, S.F. and Fillery, I.R.P., 2012. Application of eddy covariance to determine ecosystem-scale carbon balance and evapotranspiration in an agroforestry system. Agricultural and forest meteorology, 152, pp.178-188.

  • Wiesner, S., Desai, A.R., Duff, A.J., Metzger, S. and Stoy, P.C., 2022. Quantifying the natural climate solution potential of agricultural systems by combining eddy covariance and remote sensing. Journal of Geophysical Research: Biogeosciences, 127(9), p.e2022JG006895. See at Wiley.

  • Williams, C., et al, 2022. North American Carbon Program Science Implementation Plan. NACP, 161 pp. See at NACARBON.

  • Yuan, J., Jose, S., Hu, Z., Pang, J., Hou, L. and Zhang, S., 2018. Biometric and eddy covariance methods for examining the carbon balance of a Larix principis-rupprechtii forest in the Qinling Mountains, China. Forests, 9(2), p.67. See at MDPI.

  • Yusup, Y.; Ramli, N.K.; Kayode, J.S.; Yin, C.S.; Hisham, S.; Mohamad Isa, H.; Ahmad, M.I., 2020. Atmospheric carbon dioxide and electricity production due to lockdown Sustainability 12, p. 9397. https://doi.org/10.3390/su12229397

  • Zalakeviciute, R., Alexander, M.L., Allwine, E., Jimenez, J.L., Jobson, B.T., Molina, L.T., Nemitz, E., Pressley, S.N., VanReken, T.M., Ulbrich, I.M. and Velasco, E., 2012. Chemically-resolved aerosol eddy covariance flux measurements in urban Mexico City during MILAGRO 2006. Atmospheric Chemistry and Physics, 12(16), pp.7809-7823.

  • Zhuravlev, R., Dara, A., Santos, A.L.D.D., Demidov, O. and Burba, G., 2022. Globally Scalable Approach to Estimate Net Ecosystem Exchange Based on Remote Sensing, Meteorological Data, and Direct Measurements of Eddy Covariance Sites. Remote Sensing, 14(21), p.5529.

Last updated July 7, 2024